1 The antioxidant N-acetyl cysteine suppresses lidocaine-induced intracellular reactive 2 oxygen species production and cell death in neuronal SH-SY5Y cells 3 Akihisa Okamoto¹, Hiromasa Tanaka¹, Chisato Sumi¹, Kanako Oku¹, Munenori 4 Kusunoki¹, Kenichiro Nishi¹, Yoshiyuki Matsuo¹, Keizo Takenaga², Koh Shingu¹, and 5 Kiichi Hirota^{1,*} 6 7 ¹Department of Anesthesiology, Kansai Medical University, Hirakata, Japan, 8 ²Department of Life Science, Shimane University School of Medicine, Izumo, 9 Japan 10 Akihisa Okamoto: aokamoto1978@gmail.com; Hiromasa Tanaka: 11 10212291hiro@gmail.com; Chisato Sumi: chisato13150labo@gmail.com; 12 Kanako Oku: sakamaruko0727@gmail.com; Munenori Kusunoki: 13 moo1029taka@gmail.com; Kenichiro Nishi: nishik@hirakata.kmu.ac.jp; 14 Yoshiyuki Matsuo: matsuo.oustam@gmail.com; Keizo Takenaga

- 1 biokeizo@med.shimane-u.ac.jp; Koh Shingu k.shingu@jusendo.or.jp; Kiichi
- 2 Hirota: hif1@mac.com

4 *Corresponding Author: Kiichi Hirota Email: hifl@mac.com

Abstract

- 2 **Background**: The local anesthetic lidocaine can affect intra- and extra-cellular
- 3 signaling pathways in both neuronal and non-neuronal cells, resulting in long-term
- 4 modulation of biological functions, including cell growth and death. Indeed, lidocaine
- 5 was shown to induce necrosis and apoptosis *in vitro*. While several studies have
- 6 suggested that lidocaine-induced apoptosis is mitochondrial pathway-dependent, it
- 7 remains unclear whether reactive oxygen species (ROS) are involved in this process and
- 8 whether the observed cell death can be prevented by antioxidant treatment.
- 9 **Methods**: The effects of lidocaine and antioxidants on cell viability and death were
- evaluated using SH-SY5Y cells, HeLa cells, and HeLa cell derivatives. Cell viability
- 11 was examined via MTS/PES
- 12 ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra
- zolium, inner salt]/phenazine ethosulfate) assay analysis. Meanwhile, cell apoptosis and
- 14 necrosis were evaluated using an Annexin V-FITC Apoptosis Detection Kit, as well as
- by assaying for caspase-3/7 and caspase-9 activity, and by measuring the release of

- 1 lactate dehydrogenase, respectively. Mitochondrial transmembrane potential (ΔΨm)
- 2 was assessed using the fluorescent probe tetramethylrhodamine ethyl ester.
- 3 **Results**: Lidocaine treatment resulted in suppression of the mitochondrial electron
- 4 transport chain and subsequent attenuation of mitochondrial membrane potential, as
- 5 well as enhanced ROS production, activation of caspase-3/7 and caspase-9, and
- 6 induction of apoptosis and necrosis in SH-SY5Y cells in a dose- and time-dependent
- 7 manner. Likewise, the anesthetics mepivacaine and bupivacaine also induced apoptosis
- 8 in SH-SY5Y cells. Notably, the antioxidants *N*-acetyl cysteine (NAC) and Trolox
- 9 successfully scavenged the mitochondria-derived ROS and suppressed local
- 10 lidocaine-induced cell death.
- 11 **Conclusions**: Our findings demonstrate that the local anesthetics lidocaine,
- mepivacaine, and bupivacaine inhibited the activity of mitochondria and induced
- apoptosis and necrosis in a dose-dependent manner. Furthermore, they demonstrate that
- treatment with the antioxidants NAC, Trolox, and GGA resulted in preservation of
- mitochondrial voltage and inhibition of apoptosis via suppression of caspase activation.

- 1 **Keywords**: lidocaine, mitochondria, ROS, redox, apoptosis, necrosis, oxygen
- 2 consumption

4

5

Background

- 6 There is an established consensus that local anesthetics exert nerve-blocking activity,
- 7 primarily through the inhibition of voltage-gated sodium channels [1]. However, these
- 8 compounds can also affect the intra- and extra-cellular signaling pathways of both
- 9 neuronal and non-neuronal cells, resulting in long-term modulation of biological
- 10 functions, including cell growth and death [2]. Lidocaine is a widely used local
- anesthetic and anti-arrhythmic agent. Notably, lidocaine was also shown to induce
- 12 apoptosis and necrosis both *in vitro* [3-5] and *in vivo* [6], and to cause transient or
- permanent nerve injury, such as cauda equina syndrome, after spinal anesthesia in
- 14 clinical settings [7, 8]. In addition, it was reported that lidocaine inhibits the invasive
- ability of cancer cells at concentrations used for surgical operations (5–20 mM).

- 1 Apoptosis is a form of programmed cell death that is characterized by a series of distinct
- 2 morphological and biochemical changes, and is an important process in a wide variety
- 3 of biological systems. There are two major signaling pathways by which apoptosis is
- 4 induced: the intrinsic and extrinsic pathway. While the extrinsic pathway is dependent
- 5 on cell-surface death receptors such as Fas (First apoptosis signal), the intrinsic pathway
- 6 is initiated within mitochondria [9]. Specifically, in the intrinsic pathway, the formation
- 7 of a multimeric Apaf-1/cytochrome c complex results in activation of caspase-9, which
- 8 in turn cleaves and activates the downstream caspases caspase-3, -6, and -7 [1, 10].
- 9 Notably, reactive oxygen species (ROS) are widely believed to play an essential role in
- 10 apoptosis. Indeed, several studies indicate that ROS scavengers, including the synthetic
- 11 compound *N*-acetyl cysteine (NAC) and the endogenous redox-active molecule
- thioredoxin (TRX), can be used to alleviate intracellular ROS and thereby prevent
- 13 apoptosis and necrosis.
- 14 Previous studies demonstrated that lidocaine-induced cell death is dependent on the
- mitochondrial pathway; however, it is still largely unclear whether ROS are involved in
- 16 this process. In this study, we demonstrate that *in vitro* lidocaine treatment resulted in

- 1 attenuation of mitochondrial membrane potential and promoted caspase-dependent
- 2 apoptosis in neuronal SH-SY5Y cells. Moreover, we show that the observed increases
- 3 in cell death were mitochondria-derived ROS-dependent and could be blocked by
- 4 treatment with several antioxidant compounds.

6

7

Methods

- 8 Reagents
- 9 Lidocaine, mepivacaine, bupivacaine, NAC, and
- 10 (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) were obtained
- from Sigma-Aldrich (St. Louis, MO, USA), teprenone (geranylgeranylacetone, GGA)
- was obtained from Wako Pure Chemical Industries (Osaka, Japan), and recombinant
- human TRX (rhTRX) was obtained from Oriental Yeast Co., Ltd. (Tokyo, Japan). GGA
- and Trolox were dissolved in absolute ethanol, while bupivacaine and NAC were
- dissolved in H₂O, and rhTRX was dissolved in citric acid. Rotenone, oligomycin and
- antimycin A are obtained from Abcam, Inc. (Cambridge, MA, USA).

	14
(All	culture
-cu	Cuituic

- 3 All cell lines were obtained from American Type Culture Collection (ATCC; Manassas,
- 4 VA, USA). The established cell lines derived from human neuroblastoma SH-SY5Y
- 5 cells and cervical carcinoma HeLa cells were maintained in Roswell Park Memorial
- 6 Institute (RPMI) 1640 medium supplemented with 10% fetal bovine serum, 100
- 7 units/ml penicillin, and 0.1 mg/ml streptomycin. The characteristics of EB8 cells (HeLa
- 8 cells lacking mtDNA) and HeEB1 cells (a hybrid clone of EB8 cells containing mtDNA
- 9 from wild-type HeLa cells) have been described elsewhere [11, 12]. All cells were
- maintained at 37°C in a humidified atmosphere containing 5% CO₂. Cells were grown
- in 100 mm dishes and were subcultured for experiments when they reached 85%
- 12 confluence.

13

14 Cell viability assay (MTS assay)

- 15 Cell viability was assessed using a CellTiter 96TM AQueous One Solution Cell
- Proliferation Assay (Promega, Madison, WI, USA). Briefly, SH-SY5Y cells were

- 1 seeded into 96-well plates (2×10^4 cells/well) and cultivated overnight. The following
- 2 day, cells were treated with the indicated concentrations of the appropriate drug(s) for
- 3 varying lengths of time. After treatment, 20 μl of CellTiter 96 AQueous One SolutionTM
- 4 Reagent was added to each well, the plates were incubated at 37°C for 1 h, and the
- 5 absorbance of each sample was measured using an iMarkTM Micropate Reader
- 6 (BIO-RAD, Hercules, CA, USA) at a wavelength of 490 nm. Cell viability was then
- 7 calculated by comparing the absorbance of treated cells with that of the control cells
- 8 (incubated without drugs), which was defined as 100% [13, 14]. All samples were
- 9 tested in triplicate for each experiment.

11 Caspase-3/7 and caspase-9 activity assays

- 12 The levels of caspase-3/7 and caspase-9 activity were assessed using an Apo-ONETM
- Homogeneous Caspase-3/7 Assay Kit (Promega) and a Caspase-GloTM 9 Assays Kit
- 14 (Promega), respectively, according to the manufacturer's protocols. Briefly, SH-SY5Y
- 15 cells were seeded into 96-well plates $(2 \times 10^4 \text{ cells/well})$ and incubated overnight. The
- 16 following day, cells were treated with the indicated concentrations of the appropriate

- 1 drug(s) for varying lengths of time. After treatment, 100 μl of Apo-ONE Caspase-3/7
- 2 ReagentTM or Caspase-Glo 9 reagentTM was added to each well, respectively. Cells were
- 3 incubated at room temperature for 1 h and the luminescence of each well was measured
- 4 using an EnSpireTM Multimode Plate Reader (PerkinElmer, Waltham, MA, USA).
- 5 Caspase activity was then calculated by comparing the levels of luminescence of the
- 6 treated cells with that of the control cell population (incubated without drugs), which
- 7 was defined as 100%. Assays were performed in triplicate at least twice. Data were
- 8 expressed as means \pm standard deviations (SD).

Immunoblot Assays

9

- Whole cell lysates were prepared as described previously [15, 16]. Briefly, cells
- were lysed by suspension in ice-cold lysis buffer [0.1% sodium dodecyl sulfate
- 13 (SDS), 1% NP40, 5 mM ethylene diamine tetraacetic acid (EDTA), 150 mM
- NaCl, 50 mM Tris-Cl (pH 8.0), 1 mM sodium orthovanadate, and Complete
- Protease InhibitorTM (Roche Applied Science)] and centrifuged at $10,000 \times g$ to
- pellet cell debris. Approximately 25 µg of each protein sample was then separated

- 1 by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and subjected to
- 2 immunoblot analysis using rabbit polyclonal antibodies specific to PARP [poly
- 3 (ADP-ribose) polymerase; 1:1,000] or cleaved caspase-9 (Asp315; 1:1,000) (Cell
- 4 Signaling Technology, Danvers, MA, USA) [17], β-actin (Sigma-Aldrich), and
- 5 anti-rabbit IgG horseradish peroxidase-linked secondary antibodies (1:2000
- 6 dilution; Cell Signaling Technology). Immunolabeled proteins were then
- 7 visualized using enhanced chemiluminescence (ECLTM) reagents (Amersham
- 8 Biosciences, Little Chalfont, UK).

10 Analysis of cell apoptosis

- 11 Levels of cell apoptosis were measured using an Annexin V-FITC Apoptosis Detection
- 12 Kit (BioVision, Milpitas, CA, USA), according to the manufacturer's instructions. For
- these analyses, SH-SY5Y cells were seeded into 6-well plates (3×10^5 cells/well) and
- 14 incubated overnight. The following day, cells were treated with the indicated
- 15 concentrations of the appropriate drug(s) for varying lengths of time and harvested by
- 16 centrifugation at 1,200 rpm for 3 min. The culture supernatants were discharged, and

- 1 the resulting pellets were suspended in a mixture comprised of 500 μl binding buffer, 5
- 2 μl Annexing V-FITC, and 5 μl propidium iodide (PI; 50 μg/ml) for 5 min at room
- 3 temperature in the dark and analyzed using a FACSCalibur flow cytometer (BD
- 4 Biosciences, San Jose, CA, USA) equipped with CellQuest ProTM software[4, 13]. Data
- 5 were evaluated using FlowJoTM version 7.6.3 software (TreeStar, Ashland, OR, USA),
- 6 exported to Excel spreadsheets, and subsequently analyzed using the statistical
- 7 application R.

9 Lactate dehydrogenase (LDH)-based cytotoxic assay

- 10 Levels of cell cytotoxicity were evaluated using a CytoTox-ONETM Kit (Promega).
- Briefly, SH-SY5Y cells were seeded into 96-well plates (2×10^4 cells/well) and
- 12 incubated overnight. The following day, cells were treated with the indicated
- 13 concentrations of the appropriate drug(s) for varying lengths of time. Twenty
- microliters of CytoTox-ONETM reagent was added to each well, plates were incubated
- at 22°C for 10 min, and then 50 µl of Stop Solution was added to each well. The
- 16 resulting fluorescence was measured using an EnSpireTM Multimode Plate Reader

- 1 (PerkinElmer) at an excitation wavelength of 560 nm and an emission wavelength of
- 2 590 nm. Percentages of cell death were calculated by comparing the level of LDH
- 3 released (fluorescence value) from each treatment group with that of the positive control
- 4 population (cells treated with Lysis solution), which was defined as 100%. Meanwhile,
- 5 the level of LDH released from the negative control population (untreated cells) was
- 6 defined as 0%. All samples were evaluated in triplicate for each experiment.
- 8 Determination of mitochondrial membrane potential (ΔΨm)

- 9 Mitochondrial membrane potential was determined by flow cytometry using a
- 10 MitoPTTM JC-1 Assay Kit (ImmunoChemistry Technologies, Bloomington, MN, USA),
- according to the manufacturer's instructions. For these analyses, SH-SY5Y cells were
- seeded into 6-well plates $(3 \times 10^5 \text{ cells/well})$ and cultivated overnight. The following
- day, cells were treated with the indicated concentrations of the appropriate drug(s) for
- varying lengths of time and then pelleted by centrifugation at 1,200 rpm for 3 min.
- 15 Supernatants were discharged, and cells were resuspended in JC-1, incubated at 37°C
- 16 for 15 min in the dark, and collected by centrifugation at 1,200 rpm for 3 min.

- 1 Supernatants were again discharged and the remaining cell residues were suspended in
- 2 500 μl assay buffer. Samples were subsequently analyzed using a FACSCalibur flow
- 3 cytometer (BD Biosciences, San Jose, CA, USA) equipped with CellQuest ProTM
- 4 software [4, 13] for the detection of red JC-1 aggregates (590 nm emission) or green
- 5 JC-1 monomers (527 nm emission). The resulting data were evaluated using FlowJo
- 6 version 7.6.3 software (TreeStar, San Carlos, CA), exported to Excel spreadsheets, and
- 7 subsequently analyzed using the statistical application R.

- 9 Measurement of total cellular O₂ consumption rate (OCR)
- Total OCR was measured as described previously [12, 16]. Briefly, SH-SY5Y
- 11 cells were trypsinized and suspended at a concentration of 1×10^7 cells/ml in
- 12 RPMI containing 10% FBS and 25 mM HEPES buffer. For each experiment,
- equal numbers of cells (suspended in 1 ml) were pipetted into the chamber of an
- Oxytherm electrode unit (Hansatech Instruments, Norfolk, UK), which uses a
- Clark-type electrode to monitor the concentration of dissolved O_2 in the sealed
- 16 chamber over time. The test reagents including lidocaine, rotenone and FCCP

- 1 were added into the chambers immediately before each measurement. The
- 2 resulting data were exported to a computerized chart recorder (Oxygraph;
- 3 Hansatech Instruments), which calculated the OCR values. The temperature was
- 4 maintained at 25°C during measurement. The concentrations of O₂ in 1 ml of
- 5 DMEM medium lacking cells was also measured over time and utilized as the
- 6 background. O₂ consumption experiments were repeated at least three times, and
- 7 data were expressed as means \pm SD [12].

9 Live cell ROS imaging

- 10 For evaluation of intracellular ROS generation, control and lidocaine-treated
- 11 SH-SY5Y cells were treated with the ROS-sensitive dye 2',
- 12 7'-dichlorodihydrofluorescin diacetate (DCFH-DA) and analyzed using a
- 13 BioStation IM live cell time-lapse imaging system (Nikon, Tokyo, Japan) at 37°C
- and 5% CO₂; phase-contrast and fluorescence images were acquired at 15 min
- 15 intervals [18, 19].

16

1 **Statistical Analysis** 2 All experiments were repeated at least twice and each sample was evaluated in 3 triplicate. Representative data, expressed as means \pm SD, are shown. Differences 4 between results were evaluated by one-way analysis of variance (ANOVA) or 5 two-way ANOVA, followed by Dunnett's test for multiple comparisons. All statistical 6 analyses were performed using EZR (Saitama Medical Center, Jichi Medical 7 University), which is a graphical user interface for R (The R Foundation for Statistical 8 Computing, version 3.1.3) [20]. More precisely, it is a modified version of R 9 commander software (version 1.6-3) and includes statistical functions that are 10 frequently used in biostatistics. *P*-values < 0.05 were considered statistically 11 significant. All graphs were generated by the application Prims 6 for Mac OS X 12 (GraphPad Software Inc., La Jolla, CA USA). 13 14

16 Lidocaine induces SH-SY5Y cell death in a dose- and time-dependent manner

15

Results

- 1 MTS/PES
- 2 ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra
- 3 zolium, inner salt]/phenazine ethosulfate) assays were utilized to investigate the effects
- 4 of lidocaine on neuronal cell proliferation or viability. In this assay, the NADPH and
- 5 NADH produced by dehydrogenase enzymes of metabolically active cells bioreduce the
- 6 MTS tetrazolium compound (Owen's reagent) into a colored formazan product that is
- 7 soluble in tissue culture medium. Treatment with 1 mM, 4 mM, and 10 mM lidocaine
- 8 significantly suppressed SH-SY5Y cell viability at 12 h, 24 h, and 48 h after
- 9 administration in both a dose- and time-dependent manner (Fig. 1A). In contrast, 100
- 10 µM lidocaine had no effect on cell viability (Fig. 1A). To elucidate the mechanism by
- which lidocaine suppresses cell viability, we evaluated the effect of this compound on
- the levels of apoptosis in SH-SY5Y cells. Notably, treatment with 4 mM or 10 mM
- 13 lidocaine resulted in significant increases in caspase-3/7 activation after 12 h, 24 h, and
- 14 48 h (Fig. 1B), while treatment with 4 mM and 10 mM lidocaine yielded statistically
- significant activation of caspase-9 (Fig. 1C), as well as increased levels of cleaved
- 16 PARP and caspase-9 (Fig. 1D), after 24 h.

- 1 To confirm these findings, SH-SY5Y cells were stained with PI and recombinant
- 2 FITC-conjugated annexin V antibodies and evaluated by flow cytometry. Cells treated
- 3 with 4 mM or 10 mM lidocaine exhibited significantly increased numbers of PI-positive
- 4 or annexin V-positive cells after 12 h and 24 h of treatment (Fig. 1E and Supplementary
- 5 Fig. S1A–S1E). Additionally, treatment with 4 mM or 10 mM lidocaine resulted in
- 6 significant reductions in mitochondrial voltage (Fig. 1F and Supplementary Fig. 2A–
- 7 2D), while treatment with 10 mM lidocaine resulted in significant increases in
- 8 SH-SY5Y cell death after 12 h, as indicated by the levels of LDH release (Fig. 1G).

10 Critical involvement of mitochondria in lidocaine-induced cell death

- We next examined the effects of lidocaine treatment on HeLa cervical carcinoma cells, as
- well as the HeLa-derived cells lines EB8, which lack mitochondrial DNA (ρ0 cells), and
- HeEB1, a hybrid clone of EB8 cells containing mtDNA from wild-type HeLa cells.
- 14 Compared to HeLa cells and HeEB1, EB8 cells exhibited lower levels of O₂ consumption
- 15 (Supplementary Fig. S3A) than the parental HeLa cells. Meanwhile, treatment with 4 mM
- and 10 mM lidocaine resulted in significant increases in caspase-3/7 activation and cell

- 1 death in both HeLa cells (Fig. 2A) and HeEB1 cells after 24 h, compared to the control
- 2 population (Supplementary Fig. S3B and S3C). Conversely, only 10 mM lidocaine
- 3 treatment induced caspase-3/7 activation in the EB8 ρ0 cell line (Fig. 2A). Notably,
- 4 however, treatment with 10 mM lidocaine resulted in significantly higher levels of
- 5 caspase-3/7 activity in HeLa cells than in EB8 cells. Moreover, flow cytometry analysis
- 6 detected no significant difference in the levels of cell death between the untreated EB-8
- 7 ρ0 control population and the population subjected to 4 mM-lidocaine treatment,
- 8 indicating that, in contrast to the parental HeLa cell line, EB-8 cells are resistant to low
- 9 levels of lidocaine (Fig. 2B). These results prompted us to examine the involvement of
- mitochondria in lidocaine-induced cell death. First, we investigated the effect of lidocaine
- on oxygen consumption in SH-SY5Y cells; compared with the untreated control
- population, SH-SY5Y cells treated with 4 mM and 10 mM lidocaine exhibited reduced
- OCRs (Fig. 2C). We next evaluated the effects of mitochondrial ETC inhibitors, including
- 14 100nM rotenone, 2.5μg/ml oligomycin, and 4μM antimycin A, on SH-SY5Y cells. As
- expected, each of these three reagents significantly suppressed MTS conversion (Fig. 2D).
- 16 Treatment with 1mM lidocaine or each ETC inhibitors did not elicit caspase 3/7 activation

- 1 or ROS generation in SH-SY5Y cells (Figs. 2E and 2F). Notably co-treatment with 1mM
- 2 lidocaine and rotenone effectively induced the caspase activation. (Figs. 2E and 2F). In
- 3 this study, we used three types of ETC inhibitors. Although all the ETC inhibitors
- 4 increased caspase 3/7 activity and ROS generation, only rotenone exerted statistically
- 5 significant effect. Rotenone is a Complex I inhibitor. Oligomycin is an ATP synthase
- 6 inhibitor. Antimycin A is a Complex III inhibitor. The evidence warrants further
- 7 investigation to clearly elucidate the target(s) of lidocaine and the mechanism of the
- 8 synergistic effect of lidocaine and ETC inhibitors.

- 9 These findings are therefore consistent with those obtained by flow cytometry and
- 10 indicate that lidocaine promotes cell death by targeting mitochondria.

12 Effect of synthetic antioxidants on lidocaine-induced cell death

- 13 Several reports have indicated that ROS play a critical role in mitochondria-dependent
- cell death. As demonstrated in Fig. 3A, 4 mM and 10 mM lidocaine treatment induced
- ROS accumulation in SH-SY5Y cells within 6 h. Notably, however, these increases in
- 16 ROS were blocked upon treatment with the antioxidant NAC (Fig. 3A). We therefore

- 1 further examined the effects of the antioxidant NAC on SH-SY5Y cells. Treatment with
- 2 10 mM NAC blocked the suppression of SH-SY5Y viability observed upon treatment
- 3 with 4 mM lidocaine (Fig. 3B). Moreover, NAC inhibited the 4 mM lidocaine-induced
- 4 increase in caspase-3/7 activity (Figs. 3C) in a dose-dependent manner. While neither 4
- 5 mM nor 10 mM NAC treatment had any significant effect on the suppression of cell
- 6 viability mediated by 10 mM lidocaine treatment (Fig. 3B), the levels of caspase-3/7
- 7 activation induced by 10 mM lidocaine were partially suppressed by exposure to 4 mM
- 8 and 10 mM NAC (Fig. 3C). Similar effects were observed in SH-SY5Y cells treated
- 9 with another antioxidant, Trolox (250 μM; Fig. 3F). 250μM Trolox suppressed ROS
- 10 generation elicited by 4mM lidocaine (Supplementary S3E). 250µM Trolox treatment
- significantly suppressed 4mM-lidocaine induced cell death but not 10mM-lidocaine
- induced death (Fig. 3F, right panel). Although neither 4mM nor 10mM-lidocaine
- 13 induced caspase 3/7 activation was not statistically significant, 250μM Trolox
- suppressed 4mM-lidocaine induced the caspase activation. Likewise, flow cytometry
- analyses demonstrated the NAC treatment suppressed the effects of 4 mM and 10mM
- lidocaine on cell death (Fig. 3E and Supplementary Fig. S1F–S1H), mitochondrial

- 1 voltage (Supplementary Fig. S2E–S2G). LDH release by 10mM lidocaine was not
- 2 suppressed by NAC or Trolox treatment (Supplementary Fig.S3E).

- 4 Effects of an endogenous antioxidant on lidocaine-induced cell death
- 5 Next, we chose to examine the effects of TRX, an endogenous redox active protein, on
- 6 lidocaine-induced cell death. First, however, we evaluated the effects of GGA, which is
- 7 known to be an inducer of TRX [21, 22], on SH-SY5Y cells. Consistent with the results
- 8 obtained using ROS scavengers, pre-treatment of SH-SY5Y cells with 5 μM and 10 μM
- 9 GGA for 2 h resulted in reduced 4 mM lidocaine-induced cell death and caspase-3/7
- activation (Fig. 4A–4C). 10µM GGA suppressed ROS generation elicited by 4mM
- 11 lidocaine (Supplementary Fig. S3F). Even 10µM GGA did not inhibit cell death or LDH
- release induced by 10mM lidocaine (Fig. 4B and Supplementary Fig. S3E).
- 13 Surprisingly, however, treatment with 10 µg/ml rhTRX failed to suppress
- 14 lidocaine-induced caspase-3/7 activation (Figs. 4D–4F).

1	Effects of synthetic antioxidants on mepivacaine and bupivacaine-induced cell
2	death
3	Lastly, we examined the <i>in vitro</i> effects of other local anesthetics on SH-SY5Y cells.
4	Similar to those treated with 4 mM lidocaine, cells treated with 1 mM mepivacaine or 1
5	mM bupivacaine exhibited significantly reduced cell viability and increased caspase-3/7
6	activation (Figs. 5A and 5B), and these effects were blocked by treatment with 10 mM
7	NAC or 10 μ M GGA (Figs. 5A and 5B). These findings indicate that the
8	anesthetic-mediated increases in cell death observed in this study are not exclusive to
9	lidocaine.
10	
11	
12	Discussion
13	In this study, we demonstrated that the local anesthetic lidocaine suppresses the
14	mitochondrial ETC in neuronal SH-SY5Y cells in a dose- and time-dependent manner,
15	thereby attenuating mitochondrial membrane potential, inducing ROS production, and
16	activating caspase-9- and caspase-3/7-mediated apoptosis and necrosis. Moreover, we

- 1 observed similar effects in cells treated with mepivacaine and bupivacaine. Intriguingly
- 2 treatment with the antioxidants NAC and Trolox successfully suppressed these effects
- 3 by scavenging the ROS derived from mitochondria.

5 Lidocaine induces two types of cell death

- 6 Multiple studies have reported that clinically relevant concentrations (500 μM to 24
- 7 mM) of local anesthetics such as lidocaine are capable of inducing cell death in cells of
- 8 neuronal origin as well as in established cell lines derived from cancerous tissues [23,
- 9 24]. Consistent with these findings, we demonstrated that 1 mM-10 mM lidocaine was
- sufficient to promote cell death in neuronal SH-SY5Y cells and HeLa cervical
- 11 carcinoma cells (Fig. 1, Fig. 2, and Supplementary Fig. S1).

12

13

Lidocaine induces apoptosis and necrosis in a dose-dependent manner

- 14 There are at least two modes of cell death: apoptosis and necrosis [25]. Apoptosis is a
- strictly regulated (programmed) process involving the activation of specific cysteine
- proteases that is responsible for the ordered removal of superfluous, aged, or damaged

- 1 cells. Notably, while this process plays critical roles in both health and disease, necrosis
- 2 is solely the outcome of severe and acute injury. Apoptosis involves the regulated
- 3 activity of catabolic enzymes (proteases and nucleases) within a near-to-intact plasma
- 4 membrane, and is commonly accompanied by characteristic changes in nuclear
- 5 morphology and chromatin biochemistry.
- 6 In this study, lidocaine treatment promoted caspase-3/7 and caspase-9 activation, as
- 7 well as PARP cleavage, in SH-SY5Y cells (Fig. 1C and 1D). As such, these data
- 8 indicate that lidocaine induces cell death via an authentic apoptosis pathway.
- 9 Meanwhile, flow cytometry analyses demonstrated that treatment of cells with greater
- than 4 mM lidocaine especially 10mM lidocaine also resulted in increased numbers of
- 11 PI- and annexin V-positive cells (Supplementary Fig. S1). These data strongly suggest
- that lidocaine elicits both types of cell death in a dose-dependent manner *in vitro*.
- 13 Intriguingly, however, the observed increase in caspase 3/7 but not in cell death with
- 14 LDH release, was significantly suppressed by treatment with NAC, Trolox and GGA.
- 15 The evidence suggests that the antioxidants preferentially inhibit apoptosis rather than
- 16 necrosis.

15

16

increased production of mitochondrial ROS, including superoxide anions, hydroxyl

radicals, and hydrogen peroxide [27]. Specifically, inhibitor studies using isolated

- 1 mitochondria demonstrated that complexes I and III of the ETC can act as relevant
- 2 sources of mitochondrial ROS [27]. Consistent with these findings, HEK293 cells
- 3 treated with rotenone and antimycin A for inhibition of complexes I and III,
- 4 respectively, exhibited increased ROS production and induction of oxidative stress [28].
- 5 Meanwhile, ROS production was not observed in p0 cells in this study (data not
- 6 shown).

8

9 Another intriguing finding presented in this report was that both lidocaine-induced

ROS derived from mitochondria promote lidocaine-induced apoptosis

- 10 apoptosis and necrosis were ROS-dependent. The results presented in Fig. 3A clearly
- demonstrate that lidocaine treatment induced ROS generation. And while the precise
- origin of these ROS remains unclear, our findings strongly suggest that mitochondria
- play a critical role in this process (Figs. 2B and 2C). As such, these data imply that
- 14 lidocaine-mediated cell death is dependent on mitochondria. Consistent with this
- 15 conclusion, the mitochondrial DNA-deficient ρ0 cells were resistant to lidocaine
- treatment (Fig. 3B). Moreover, our data are consistent with a previous report

- 1 demonstrating that tetracaine-induced apoptosis in rat cortical astrocytes is associated
- 2 with increased ROS production [4].

- 4 Effect of antioxidants on lidocaine-induced cell apoptosis
- 5 Oxidative stress in response to various external stimuli has been implicated in the
- 6 induction of apoptosis. Specifically, oxygen free radicals induce DNA sequence
- 7 changes and rearrangements that may trigger apoptotic cell death of neuronal cells. In
- 8 this study, we provided the first evidence that ROS scavengers such as NAC and Trolox
- 9 can significantly suppress lidocaine-induced cell death in vitro. Conversely, while
- treatment with rhTRX had no affect on apoptosis or necrosis, GGA, which is known to
- 11 induce TRX expression and is itself an antioxidant, exerted a protective effect against
- 12 lidocaine-induced cell death. Although the molecular mechanisms underlying these
- discrepancies are unclear, it is possible that extracellular administration of rhTRX is an
- ineffective method for modulating intracellular redox status [22, 29, 30]. Also, GGA
- has been shown to promote the expression of heat shock protein 70, which was reported
- to alleviate cellular stress and exert cytoprotective effects [31, 32]. As such, the

- 1 observed beneficial effects of GGA on cell survival may be dependent on induction of
- 2 HSP70 and not TRX. In any case, future studies using cells that overexpress TRX may
- 3 better elucidate whether this protein can inhibit anesthetic-induced cell death.

5

Limitations

- 6 There are several limitations to the present study. First, the established SH-SY5Y and
- 7 HeLa cell lines were used exclusively for all experiments. Although SH-SY5Y cells are
- 8 derived from neuronal tissue and exhibit several characteristics similar to neurons, our
- 9 experimental results and conclusions cannot necessarily by extrapolated to neuronal
- 10 injuries induced by local anesthetics in an *in vivo* setting. Furthermore, although we
- evaluated the effects of lidocaine on p0 cells, which lack mitochondrial DNA, the
- majority of the data were obtained using HeLa cells, primarily due to technical issues.
- Lastly, the results presented in this study demonstrate that local anesthetics negatively
- 14 affect mitochondrial activity, thereby inducing apoptosis; however, the specific
- molecular targets have yet to be identified. As such, the identification of such targets
- 16 comprises a critical goal for future studies.

٦	1	
	ı	

~	Conclusions
_	Conclusions
_	Conciusions

- 3 In this study, we demonstrated that the local anesthetics lidocaine, mepivacaine, and
- 4 bupivacaine induce two types of cell death in neuronal cells *in vitro*. In particular,
- 5 treatment with 1–4 mM lidocaine promoted apoptosis, while treatment with 10 mM
- 6 lidocaine induced cell death with LDH release. Moreover, our data demonstrate that
- 7 these compounds specifically target mitochondria, and that the ROS produced by
- 8 mitochondria play an integral role in the observed induction of apoptosis. Lastly, we
- 9 demonstrated that scavenging of ROS with antioxidants such as NAC, Trolox, and
- 10 GGA preserved mitochondrial voltage and prevented apoptosis by suppressing caspase
- 11 activation.

13

14

List of Abbreviations

- NAC: *N*-acetyl cysteine; ROS: reactive oxygen species; TRX: thioredoxin; OCR:
- 16 oxygen consumption rate

2	Ethics of approval and consent to participate
3	Not applicable
4	Consent for publication
5	This manuscript does not contain any individual persons data, we state "Not applicable"
6	in this section.
7	The authors agree to conditions of submission, BioMed Central's copyright and license
8	agreement and article-processing charge (APC).
9	
10	Availability of data and materials
11	The datasets analysed in the current study available from the corresponding author on
12	reasonable request.
13	
14	Competing interests
15	The authors declare no competing interests.

Declarations

2	Funding
3	This work was supported by grants from the Japan Society for the Promotion of Science
4	(KAKENHI; Grant #26670693 and #24592336 to K.H., and #25462457 to K.N.) and by
5	the research grant D2 from Kansai Medical University.
6	
7	Author Contributions
8	AO, KS, and KH designed the study, performed the data analyses, and wrote the
9	manuscript. CS and KN collected and analyzed the data. MT, KO, and YM analyzed the
10	data. KT provided experimental materials. All authors read and approved the final
11	version of the manuscript.
12	
13	Acknowledgements
14	We would like to Editage (www.editage.jp) for English language editing.
15	
16	Additional files

- 1 Additional file: Supplementary Figure S1 Analysis of cell apoptosis by FACS
- 2 Levels of cell apoptosis were measured using an Annexin V-FITC Apoptosis
- 3 Detection Kit (BioVision, Milpitas, CA, USA), according to the manufacturer's
- 4 instructions. For these analyses, SH-SY5Y cells were seeded into 6-well plates (3
- 5×10^5 cells/well) and incubated overnight. The following day, cells were treated
- 6 with the indicated concentrations of the appropriate drug(s) for varying lengths of
- 7 time and harvested by centrifugation at 1,200 rpm for 3 min. The culture
- 8 supernatants were discharged, and the resulting pellets were resuspended in a
- 9 mixture comprised of 500 μ l binding buffer, 5 μ l Annexing V-FITC, and 5 μ l
- 10 propidium iodide (PI; 50 μg/ml) for 5 min at room temperature in the dark and
- analyzed using a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA,
- 12 USA). (PDF 2.1 MB)

- 14 Additional file: Supplementary Figure S2 Mitochondrial membrane potential
- 15 $(\Delta \Psi m)$

- 1 Mitochondrial membrane potential was determined by flow cytometry using a
- 2 MitoPTTM JC-1 Assay Kit (ImmunoChemistry Technologies, Bloomington, MN,
- 3 USA), according to the manufacturer's instructions. For these analyses, SH-SY5Y
- 4 cells were seeded into 6-well plates $(3 \times 10^5 \text{ cells/well})$ and cultivated overnight.
- 5 The following day, cells were treated with the indicated concentrations of the
- 6 appropriate drug(s) for varying lengths of time and then pelleted by centrifugation
- 7 at 1,200 rpm for 3 min. Supernatants were discharged, and cells were resuspended
- 8 in JC-1, incubated at 37°C for 15 min in the dark, and collected by centrifugation
- 9 at 1,200 rpm for 3 min. Supernatants were again discharged and the remaining cell
- 10 residues were suspended in 500 μl assay buffer. Samples were subsequently
- analyzed using a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA,
- 12 USA) equipped with CellQuest ProTM software for the detection of red JC-1
- 13 aggregates (590 nm emission) or green JC-1 monomers (527 nm emission). (PDF
- 14 2.1 MB)

16 Additional file: Supplementary Figure S3 Results of HeLa cell-derivatives EB8 and

HeEB1

- 2 (A) Oxygen consumption rate of HeLa cells, EB8 and HeEB1cells were demonstrated.
- 3 (B) Graphic depiction of reactive oxygen species (ROS) production in HeLa cells and
- 4 EB8 cells exposed to the indicated concentrations of lidocaine (0, 4, or 10 mM) for 6 h
- 5 (n = 3). Data depict the ratio of ROS production in treated cells compared to that in the
- 6 untreated control group (HeLa cells).
- 7 (C) Activities of Caspase 3/7 of HeLa cells and HeEB1 cells were demonstrated. (D)
- 8 Levels of cell death were measured using an Annexin V-FITC Apoptosis Detection Kit
- 9 evaluated by FACS were demonstrated. (E) Graphic depiction of the levels of cell death
- among treated and untreated cell populations. Cell death was evaluated by measuring
- 11 the levels of lactate dehydrogenase (LDH) within culture supernatants (n = 3) in the
- presence or absence of 10 mM *N*-acetyl cysteine (NAC), 250μM Trolox and 10μM
- 13 GGA. Control is LDH activity treated by lysis buffer. (F) Graphic depiction of reactive
- oxygen species (ROS) production in SH-SY5Y cells exposed to 4 mM) for 6 h (n = 3)
- in the presence or absence of 10 mM N-acetyl cysteine (NAC), 250μM Trolox and
- 16 10µM GGA. Data depict the ratio of ROS production in treated cells compared to that

- 1 in the untreated control group. Data presented in A–E expressed as means \pm standard
- deviations (SD). #p < 0.05 compared with the control cell population at the same time
- 3 period. (PDF 602 KB)

5 References

- 6 1. Butterworth JFt, Strichartz GR: Molecular mechanisms of local anesthesia: a
- 7 **review**. *Anesthesiology* 1990, **72**(4):711-734.
- 8 2. Tan Z, Dohi S, Ohguchi K, Nakashima S, Nozawa Y: Local anesthetics inhibit
- 9 muscarinic receptor-mediated activation of extracellular signal-regulated
- kinases in rat pheochromocytoma PC12 cells. Anesthesiology 1999,
- **91**(4):1014-1024.
- 12 3. Werdehausen R, Braun S, Essmann F, Schulze-Osthoff K, Walczak H, Lipfert P,
- 13 Stevens MF: Lidocaine induces apoptosis via the mitochondrial pathway
- independently of death receptor signaling. Anesthesiology 2007,
- **107**(1):136-143.
- 16 4. Werdehausen R, Fazeli S, Braun S, Hermanns H, Essmann F, Hollmann MW,

- 1 Bauer I, Stevens MF: Apoptosis induction by different local anaesthetics in a
- 2 **neuroblastoma cell line**. *Br J Anaesth* 2009, **103**(5):711-718.
- 3 5. Kamiya Y, Ohta K, Kaneko Y: Lidocaine-induced apoptosis and necrosis in
- 4 **U937 cells depending on its dosage**. *Biomed Res* 2005, **26**(6):231-239.
- 5 6. Gold MS, Reichling DB, Hampl KF, Drasner K, Levine JD: Lidocaine toxicity
- 6 in primary afferent neurons from the rat. J Pharmacol Exp Ther 1998,
- 7 **285**(2):413-421.
- 8 7. Auroy Y, Narchi P, Messiah A, Litt L, Rouvier B, Samii K: **Serious**
- 9 complications related to regional anesthesia: results of a prospective survey
- in France. Anesthesiology 1997, **87**(3):479-486.
- 11 8. Zaric D, Christiansen C, Pace NL, Punjasawadwong Y: **Transient neurologic**
- 12 symptoms after spinal anesthesia with lidocaine versus other local
- anesthetics: a systematic review of randomized, controlled trials. Anesth
- 14 *Analg* 2005, **100**(6):1811-1816.
- 15 9. Fesik SW, Shi Y: Structural biology. Controlling the caspases. Science 2001,
- **294**(5546):1477-1478.

- 1 10. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X: Biochemical pathways of
- 2 caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999,
- **15**:269-290.
- 4 11. Enomoto N, Koshikawa N, Gassmann M, Hayashi J, Takenaga K: **Hypoxic**
- 5 induction of hypoxia-inducible factor-1alpha and oxygen-regulated gene
- 6 expression in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res
- 7 *Commun* 2002, **297**(2):346-352.
- 8 12. Kai S, Tanaka T, Daijo H, Harada H, Kishimoto S, Suzuki K, Takabuchi S,
- 7 Takenaga K, Fukuda K, Hirota K: **Hydrogen sulfide inhibits hypoxia- but not**
- anoxia-induced hypoxia-inducible factor 1 activation in a von
- 11 hippel-lindau- and mitochondria-dependent manner. Antioxid Redox Signal
- 12 2012, **16**(3):203-216.
- 13 13. Chang YC, Hsu YC, Liu CL, Huang SY, Hu MC, Cheng SP: Local anesthetics
- induce apoptosis in human thyroid cancer cells through the
- mitogen-activated protein kinase pathway. *PLoS One* 2014, **9**(2):e89563.
- 16 14. Chang YC, Liu CL, Chen MJ, Hsu YW, Chen SN, Lin CH, Chen CM, Yang

- 1 FM, Hu MC: Local anesthetics induce apoptosis in human breast tumor
- 2 **cells**. *Anesth Analg* 2014, **118**(1):116-124.
- 3 15. Tanaka T, Wakamatsu T, Daijo H, Oda S, Kai S, Adachi T, Kizaka-Kondoh S,
- Fukuda K, Hirota K: **Persisting mild hypothermia suppresses**
- 5 hypoxia-inducible factor-1alpha protein synthesis and hypoxia-inducible
- 6 factor-1-mediated gene expression. Am J Physiol Regul Integr Comp Physiol
- 7 2010, **298**(3):R661-671.
- 8 16. Suzuki K, Sato Y, Kai S, Nishi K, Adachi T, Matsuo Y, Hirota K: Volatile
- 9 anesthetics suppress glucose-stimulated insulin secretion in MIN6 cells by
- inhibiting glucose-induced activation of hypoxia-inducible factor 1. PeerJ
- 11 2015, **3**:e1498.
- 12 17. Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM:
- 13 Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis.
- Lesson from an uncleavable mutant. J Biol Chem 1998,
- **273**(50):33533-33539.
- 16 18. Sommani P, Yamashita K, Miyoshi T, Tsunemine H, Kodaki T, Mori H, Hirota

- 1 K, Arai T, Sasada M, Makino K: Inhibitory Effect of 6-Formylpterin on
- 2 HIF-1alpha Protein Accumulation. *Biol Pharm Bull* 2007, **30**(11):2181-2184.
- 3 19. Nishinaka Y, Mori H, Endo N, Miyoshi T, Yamashita K, Adachi S, Arai T:
- 4 Edaravone directly reacts with singlet oxygen and protects cells from
- 5 **attack**. *Life Sci* 2010, **86**(21-22):808-813.
- 6 20. Kanda Y: Investigation of the freely available easy-to-use software 'EZR' for
- 7 **medical statistics**. *Bone Marrow Transplant* 2013, **48**(3):452-458.
- 8 21. Hirota K, Nakamura H, Arai T, Ishii H, Bai J, Itoh T, Fukuda K, Yodoi J:
- 9 Geranylgeranylacetone enhances expression of thioredoxin and suppresses
- 10 ethanol-induced cytotoxicity in cultured hepatocytes. Biochem Biophys Res
- 11 *Commun* 2000, **275**(3):825-830.
- 12 22. Hirota K, Nakamura H, Masutani H, Yodoi J: Thioredoxin superfamily and
- thioredoxin-inducing agents. Ann NY Acad Sci 2002, 957:189-199.
- 14 23. Perez-Castro R, Patel S, Garavito-Aguilar ZV, Rosenberg A, Recio-Pinto E,
- Thang J, Blanck TJ, Xu F: Cytotoxicity of local anesthetics in human
- 16 **neuronal cells**. *Anesth Analg* 2009, **108**(3):997-1007.

- 1 24. Grishko V, Xu M, Wilson G, Pearsall AWt: Apoptosis and mitochondrial
- 2 dysfunction in human chondrocytes following exposure to lidocaine,
- 3 **bupivacaine, and ropivacaine**. J Bone Joint Surg Am 2010, **92**(3):609-618.
- 4 25. Kroemer G, Dallaporta B, Resche-Rigon M: The mitochondrial death/life
- 5 regulator in apoptosis and necrosis. *Annu Rev Physiol* 1998, **60**:619-642.
- 6 26. Adade AB, Chignell D, Vanderkooi G: Local anesthetics: a new class of
- 7 partial inhibitors of mitochondrial ATPase. J Bioenerg Biomembr 1984,
- 8 **16**(5-6):353-363.
- 9 27. Forkink M, Basit F, Teixeira J, Swarts HG, Koopman WJ, Willems PH:
- 10 Complex I and complex III inhibition specifically increase cytosolic
- 11 hydrogen peroxide levels without inducing oxidative stress in HEK293 cells.
- 12 *Redox Biol* 2015, **6**:607-616.
- 13 28. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ: Production of
- reactive oxygen species by mitochondria: central role of complex III. J Biol
- 15 *Chem* 2003, **278**(38):36027-36031.
- 16 29. Yoda M, Sakai T, Mitsuyama H, Hiraiwa H, Ishiguro N:

2		osteoarthritic chondrocytes. J Orthop Sci 2011, 16(6):791-798.
3	30.	Kim YJ, Kim JY, Kang SW, Chun GS, Ban JY: Protective effect of
4		geranylgeranylacetone against hydrogen peroxide-induced oxidative stress
5		in human neuroblastoma cells. Life Sci 2015, 131:51-56.
6	31.	Hirakawa T, Rokutan K, Nikawa T, Kishi K: Geranylgeranylacetone induces
7		heat shock proteins in cultured guinea pig gastric mucosal cells and rat
8		gastric mucosa. Gastroenterology 1996, 111(2):345-357.
9	32.	Ikeyama S, Kusumoto K, Miyake H, Rokutan K, Tashiro S: A non-toxic heat
10		shock protein 70 inducer, geranylgeranylacetone, suppresses apoptosis of
11		cultured rat hepatocytes caused by hydrogen peroxide and ethanol. ${\cal J}$
12		Hepatol 2001, 35 (1):53-61.
13		
14		
15 Figure legends		
16		

Geranylgeranylacetone suppresses hydrogen peroxide-induced apoptosis of

- 1 Figure 1. Lidocaine induces SH-SY5Y cell death in a dose- and time-dependent
- 2 manner. Neuronal SH-SY5Y cells were exposed to the indicated concentrations (0.1, 1,
- 3 4, or 10 mM) of lidocaine for varying lengths of time (0, 12, 24, and 48 h). (A) Graphic
- 4 depiction of the levels of cell viability of treated and untreated cells at each time point,
- 5 as evaluated by MTS
- 6 [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetraz
- 7 olium] assay analysis (n = 4). (B and C) Graphic depictions of caspase-3/7 (n = 3) and
- 8 caspase-9 (n = 5) activity in each treatment group at different time points, as determined
- 9 using an Apo-ONETM Homogeneous Caspase-3/7 Assay Kit and a Caspase-GloTM 9
- 10 Assays Kit, respectively. (D) Immunoblot analysis of the levels of poly (ADP-ribose)
- polymerase (PARP), cleaved caspase-9 and β -actin in the lysates of treated and
- 12 untreated cells after 24 h. The blots are derived from two independent experiments. (E)
- 13 Treated and untreated cells were harvested, and the levels of cell death were analyzed
- by flow cytometry. The ratio of propidium iodide (PI)-positive and/or annexin
- V-positive cells [(Q1 + Q2 + Q4)/(Q1 + Q2 + Q3 + Q4)] was used to calculate the
- percentage of dead cells (Supplemental Fig. S1) (n = 3). (F) Graphic depiction of the

- 1 average mitochondrial membrane potential ($\Delta \Psi m$) of treated and untreated cells (n = 3)
- 2 at each time point, as measured using a MitoPTTM JC-1 Assay Kit. Values indicate the
- 3 ratio [Q2/(Q2+Q4)] of green JC-1 monomers (527 nm emission) to red aggregates (590
- 4 nm emission). (G) Graphic depiction of the levels of cell death among treated and
- 5 untreated cell populations. Cell death was evaluated by measuring the levels of lactate
- 6 dehydrogenase (LDH) within culture supernatants (n = 4). Control is treatment by lysis
- 7 buffer. Data presented in A–C and E–G are expressed as means \pm standard deviations
- 8 (SD). Differences between results were evaluated by two-way ANOVA (A, B, E and F),
- 9 followed by Dunnett's test for multiple comparisons in each group and one-way
- 10 ANOVA (C and G) followed by Dunnett's test for multiple comparisons. *p < 0.05
- 11 compared with the control cell population at incubation time 0 h (no treatment). #p <
- 12 0.05 compared with the control cell population at the same time period (group).

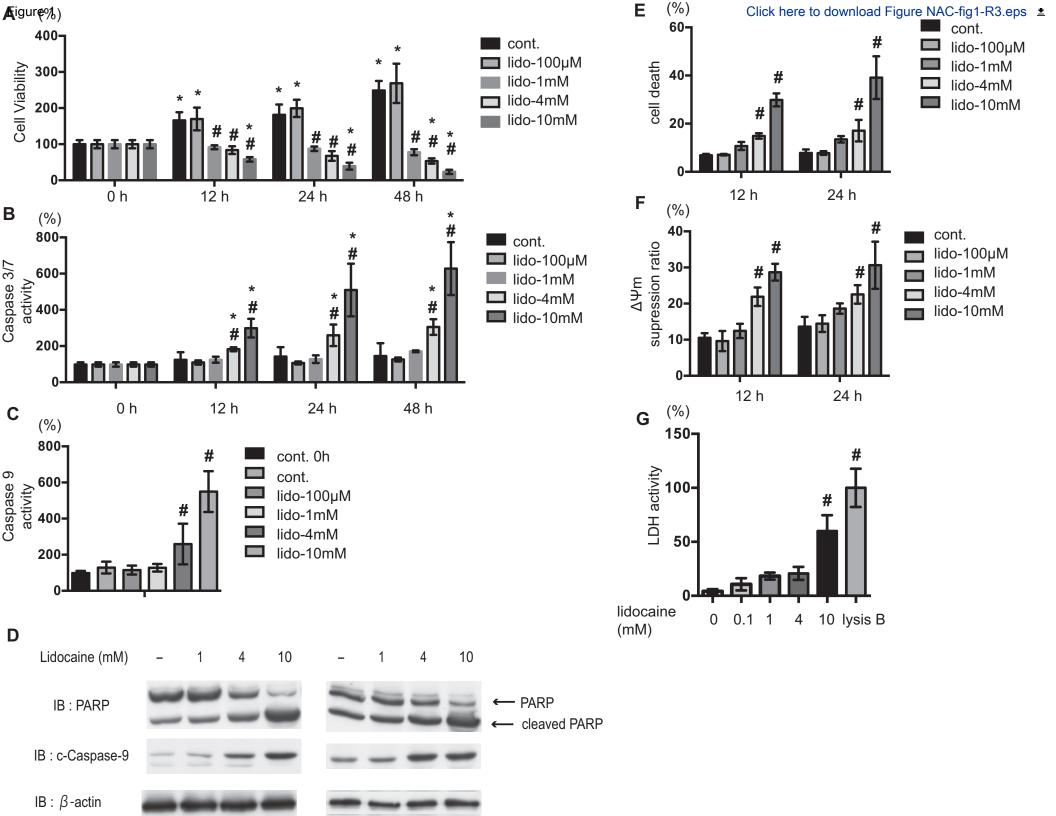
- 14 Figure 2. Critical involvement of mitochondria in lidocaine-induced cell death.
- HeLa cells and EB-1 cells (HeLa cells lacking mitochondrial DNA) were exposed to the
- indicated concentrations of lidocaine (0, 0.1, 1, 4, or 10 mM) for 24 h. (A) Graphic

- 1 depiction of the levels of caspase-3/7 activity in each treatment group, as determined
- 2 using an Apo-ONE Homogeneous Caspase-3/7 Assay KitTM (n = 4). (B) Treated and
- 3 untreated cells were harvested, and the levels of cell death were analyzed by flow
- 4 cytometry (n = 4). The ratio with propidium iodide (PI)- or annexin V-positive cells
- [(Q1 + Q2 + Q4)/(Q1 + Q2 + Q3 + Q4)] were indicated as dead cells (Supplemental
- 6 Fig. S1). (C) Graphic depiction of the oxygen consumption rate (OCR) in untreated
- 7 SH-SY5Y cells and cells treated with lidocaine (0.1, 1, 4, or 10 mM), rotenone (100
- 8 nM), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) (50 nM). Values
- 9 are presented as ratios of OCR compared to that in the control (without lidocaine
- treatment) group (n = 4). (D and E) Graphic depiction of the levels of cell viability
- among SH-SY5Y cells treated with mitochondrial ETC inhibitors. Cells were treated
- with 1 mM lidocaine and either 100n M rotenone, 2.5μg/ml oligomycin, or 4μM
- 13 antimycin A, and subjected to (D) MTS
- 14 [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetraz
- olium] assay (n = 3) or (E) caspase-3/7 activity assay (n = 3) analysis. (F) Graphic
- depiction of reactive oxygen species (ROS) production in SH-SY5Y cells exposed to

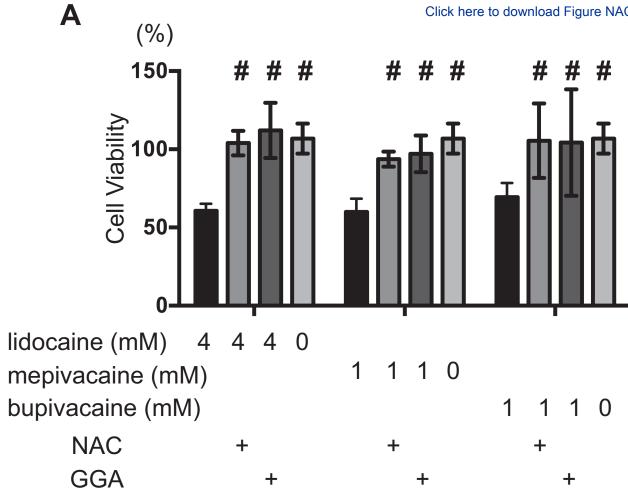
- 1 1m lidocaine in the presence or absence of 100nM rotenone, 2.5µg/ml oligomycin and
- 2 4μ M antimycin A for 6 h (n = 3). Data depict the ratio of ROS production in treated
- 3 cells compared to that in the untreated control group. All data were expressed as means
- \pm standard deviations (SD). Differences between results were evaluated by two-way
- 5 analysis of variance (ANOVA) (A, B, E and F) followed by Dunnett's for multiple
- 6 comparisons in each group or one-way ANOVA (C and D), followed by Dunnett's test
- 7 for multiple comparisons. #p < 0.05 compared with the control treatment population in
- 8 the same group.

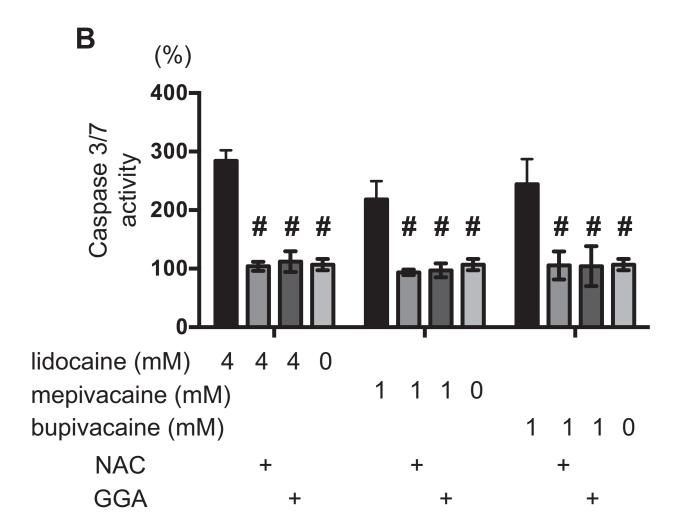
- 10 Figure 3. Effect of synthetic antioxidants on lidocaine-induced cell death. (A)
- 11 Graphic depiction of reactive oxygen species (ROS) production in SH-SY5Y cells
- exposed to the indicated concentrations of lidocaine (0, 0.1, 4, or 10 mM) for 6 h (n = 3)
- in the presence or absence of 10 mM *N*-acetyl cysteine (NAC). Data depict the ratio of
- 14 ROS production in treated cells compared to that in the untreated control group. (B–E)
- 15 SH-SY5Y cells were exposed to the indicated concentrations of lidocaine (0, 4, or 10
- 16 mM) for 24 h in the presence or absence of NAC (4 or 10 mM). (B) Cell viability and

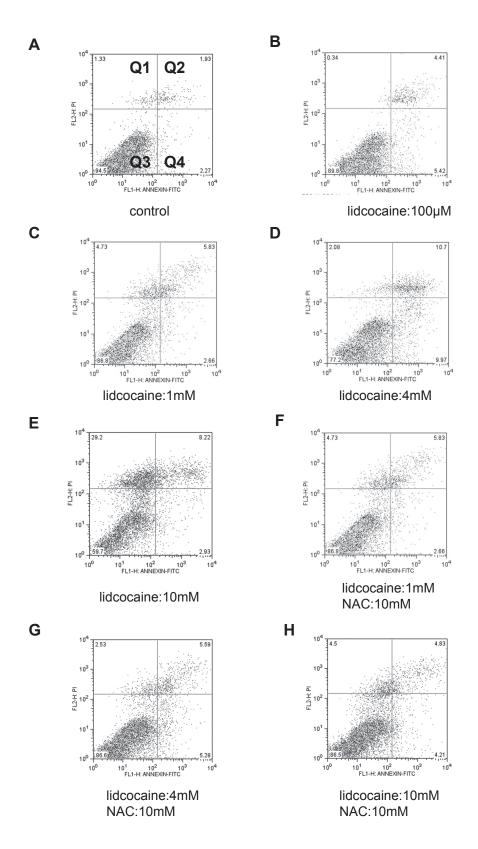
- 1 (C) caspase-3/7 activity were evaluated by MTS
- 2 [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetraz
- 3 olium] assay (n = 3) and Apo-ONETM Homogeneous Caspase-3/7 Assay (n = 3)
- 4 analysis, respectively. (D) Cells were harvested and lysates were subjected to
- 5 immunoblot assay analysis using antibodies specific to poly (ADP-ribose) polymerase
- 6 (PARP) and cleaved caspase-9. (E) Graphic depiction of the levels of cell death among
- 7 treated and untreated cell populations, as evaluated by flow cytometry (n = 4). The ratio
- 8 with PI or annexin V positive cells [(Q1 + Q2 + Q4)/(Q1 + Q2 + Q3 + Q4)] were
- 9 indicated as dead cells (Supplemental Fig. S1). (F) SH-SY5Y cells were exposed to the
- indicated concentrations of lidocaine (0.1, 1, 4, or 10 mM) in the presence or absence of
- 11 250 μ M Trolox for 24 h, and subjected to caspase-3/7 activity assay analysis (n = 4)
- 12 (left panel). Graphic depiction of the levels of cell death among treated and untreated
- cell populations, as evaluated by flow cytometry (n = 3) (right panel). The ratio with PI
- or annexin V positive cells [(Q1 + Q2 + Q4)/(Q1 + Q2 + Q3 + Q4)] were indicated as
- dead cells. Differences between results were evaluated by one-way analysis of variance
- 16 (ANOVA) (A) followed by Dunnett's test for multiple comparisons or two-way


- 1 ANOVA (B, C, E and F) followed by Dunnett's test for multiple comparisons in each
- 2 group. *p < 0.05 compared with the control cell population at 0 h (no treatment). #p <
- 3 0.05 compared with the control treatment population in the same group.

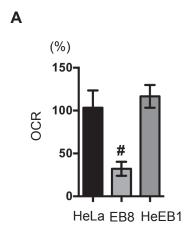
- 5 Figure 4. Effects of an endogenous antioxidant on lidocaine-induced cell death. (A-
- 6 C) SH-SY5Y cells were exposed to the indicated concentrations of lidocaine (0, 4, or 10
- 7 mM) for 24 h in the presence or absence of pretreatment with 5 or 10 μM teprenone
- 8 (geranylgeranylacetone, GGA) for 24 h. (A) Cell viability and (B) caspase-3/7 activity
- 9 were evaluated by MTS
- 10 [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetraz
- olium] and Apo-ONETM Homogeneous Caspase-3/7 Assay analysis, respectively (n = 3)
- for each). (C) Graphic depiction of the levels of cell death among treated and untreated
- cell populations, as evaluated by flow cytometry (n = 4). The ratio with PI or annexin V
- positive cells were indicated as dead cells. (D-F) SH-SY5Y cells were exposed to the
- indicated concentrations of lidocaine (0, 1, 4, or 10 mM) for 24 h in the presence or
- absence of pretreatment with 10 µM recombinant human thioredoxin (TRX) for 2 h.


- 1 Graphic depictions of (D) cell viability (n = 3), (E) caspase-3/7 activity (n = 3), and (F)
- 2 cell death (n = 4), as determined by MTS, Apo-ONETM Homogeneous Caspase-3/7, and
- 3 flow cytometry analysis, respectively. All data were expressed as means \pm standard
- 4 deviations (SD). Differences between results were evaluated by two-way analysis of
- 5 variance (ANOVA) followed by Dunnett's test for multiple comparisons in each group.
- 6 *p < 0.05 compared with the control cell population at time 0 h (no treatment). #p <
- 7 0.05 compared with the control treatment population in the same group.
- 9 **Figure 5.** SH-SY5Y cells were exposed to the indicated concentrations of local
- anesthetics in the presence or absence of the indicated concentrations of 10 mM *N*-acetyl
- 11 cysteine (NAC) and 10 μM geranylgeranylacetone (GGA) for 24 h. (A) Levels of cell
- 12 viability and (B) caspase-3/7 activity were evaluated by MTS


- 13 [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetraz
- olium] and Apo-ONETM Homogeneous Caspase-3/7 Assay analyses (n = 3 for each).
- Data were expressed as means \pm standard deviations (SD). Differences between results
- were evaluated by two-way analysis of variance (ANOVA) followed by Dunnett's test


- 1 for multiple comparisons. *p < 0.05 compared with the control cell population at time 0
- 2 h (no treatment). #p < 0.05 compared with the control treatment population in the same
- 3 group




FCCP (nM)

